16-02-2022, 03:36 PM
Suhail Yusuf
February 15, 2022
KARACHI:
A team led by Pakistani scientist has developed a promising solar cell technology that sets two new world records of efficiency in the lab.
......
Yasir Siddique – a PhD scholar at the Korea Institute of Energy Research (KIER) and the University of Science and Technology (UST), Daejeon, South Korea – has designed and fabricated solution-processed Copper Indium Sulphu Selenide (CISSe) solar cells.
......
Theoretically, the sun throws 1,360 watts per square metre of mixed energy on a surface directly facing it.
However, the sunlight on any solar cell largely reflected or passed through the structure and a few per cent of energy converts directly from sunlight into electricity. So, the power conversion rate, roughly called the efficiency is the degree to which a solar cell converts energy from sunrays.
......
Different types of solar cell have different efficiencies for instance traditional silicon cell has efficiency from 15 to 20 per cent while concentrated solar cells could be 41 per cent efficient but need focused beams at one place.
However, Siddique’s cell falls in the emerging trend of Tandem solar technology and is now most efficient in its category.
......
Siddique’s recent innovation ...... touched the efficiency of 23.03 per cent. This is the highest efficiency as compared to all solution-processed (perovskite/CISSe) solar cell category.
......
In the previous record, a team of Chinese, Americans and Australians declared 13.5 per cent efficiency of the same type of solar cells. But that cell fabrication was only possible in glass-based glove box filled with Nitrogen gas. A huge amount of Nitrogen was needed in mass production which made commercialisation nearly impossible.
Siddique also devised a magic ingredient to make the device more stable and it was a molecular ink.
“We successfully eradicated the need for Nitrogen and carved the cell in an open [ambient] air environment. The CISSe based thin film was made possible due to the addition of N, N-dimethylformamide (DMF) based molecular ink which has the ability to make highly stable complexes with Thiourea and metal chlorides,” Siddique added.
https://tribune.com.pk/story/2343626/pak...technology
February 15, 2022
KARACHI:
A team led by Pakistani scientist has developed a promising solar cell technology that sets two new world records of efficiency in the lab.
......
Yasir Siddique – a PhD scholar at the Korea Institute of Energy Research (KIER) and the University of Science and Technology (UST), Daejeon, South Korea – has designed and fabricated solution-processed Copper Indium Sulphu Selenide (CISSe) solar cells.
......
Theoretically, the sun throws 1,360 watts per square metre of mixed energy on a surface directly facing it.
However, the sunlight on any solar cell largely reflected or passed through the structure and a few per cent of energy converts directly from sunlight into electricity. So, the power conversion rate, roughly called the efficiency is the degree to which a solar cell converts energy from sunrays.
......
Different types of solar cell have different efficiencies for instance traditional silicon cell has efficiency from 15 to 20 per cent while concentrated solar cells could be 41 per cent efficient but need focused beams at one place.
However, Siddique’s cell falls in the emerging trend of Tandem solar technology and is now most efficient in its category.
......
Siddique’s recent innovation ...... touched the efficiency of 23.03 per cent. This is the highest efficiency as compared to all solution-processed (perovskite/CISSe) solar cell category.
......
In the previous record, a team of Chinese, Americans and Australians declared 13.5 per cent efficiency of the same type of solar cells. But that cell fabrication was only possible in glass-based glove box filled with Nitrogen gas. A huge amount of Nitrogen was needed in mass production which made commercialisation nearly impossible.
Siddique also devised a magic ingredient to make the device more stable and it was a molecular ink.
“We successfully eradicated the need for Nitrogen and carved the cell in an open [ambient] air environment. The CISSe based thin film was made possible due to the addition of N, N-dimethylformamide (DMF) based molecular ink which has the ability to make highly stable complexes with Thiourea and metal chlorides,” Siddique added.
https://tribune.com.pk/story/2343626/pak...technology